Activation of GLP-1 Receptor Enhances Neuronal Base Excision Repair via PI3K-AKT-Induced Expression of Apurinic/Apyrimidinic Endonuclease 1
نویسندگان
چکیده
Glucagon-like peptide-1 (GLP-1) is an intestinal-secreted incretin that increases cellular glucose up-take to decrease blood sugar. Recent studies, however, suggest that the function of GLP-1 is not only to decrease blood sugar, but also acts as a neurotrophic factor that plays a role in neuronal survival, neurite outgrowth, and protects synaptic plasticity and memory formation from effects of β-amyloid. Oxidative DNA damage occurs during normal neuron-activity and in many neurological diseases. Our study describes how GLP-1 affected the ability of neurons to ameliorate oxidative DNA damage. We show that activation of GLP-1 receptor (GLP-1R) protect cortical neurons from menadione induced oxidative DNA damage via a signaling pathway involving enhanced DNA repair. GLP-1 stimulates DNA repair by activating the cyclic AMP response element binding protein (CREB) which, consequently, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair (BER) pathway. In this study, APE1 expression was down-regulated as a consequence phosphatidylinositol-3 kinase (PI3K) suppression by the inhibitor LY294002, but not by the suppression of MEK activity. Ischemic stroke is typically caused by overwhelming oxidative-stress in brain cells. Administration of exentin-4, an analogue of GLP-1, efficiently enhanced DNA repair in brain cells of ischemic stroke rats. Our study suggests that a new function of GLP-1 is to elevate DNA repair by inducing the expression of the DNA repair protein APE1.
منابع مشابه
Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia.
Inducible DNA repair via the base-excision repair pathway is an important prosurvival mechanism activated in response to oxidative DNA damage. Elevated levels of the essential base-excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1)/redox effector factor-1 correlate closely with neuronal survival against ischemic insults, depending on the CNS region, protective treatments, and de...
متن کاملThe Emerging Role of GLP-1 Receptors in DNA Repair: Implications in Neurological Disorders
Glucagon-like peptide-1 (GLP-1) is originally found as a metabolic hormone (incretin) that is able to regulate blood-glucose levels via promoting synthesis and secretion of insulin. GLP-1 and many analogues are approved for treatment of type II diabetes. Accumulating results imply that GLP-1 performs multiple functions in various tissues and organs beyond regulation of blood-glucose. The neurop...
متن کاملImplications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons.
Peripheral neuropathy is one of the major side effects of the anticancer drug cisplatin. Although previous work suggests that this neuropathy correlates with formation of DNA adducts in sensory neurons, growing evidence suggests that cisplatin also increases the generation of reactive oxygen species (ROS), which could cause DNA damage. Apurinic/apyrimidinic endonuclease/redox factor-1 (Ape1/Ref...
متن کاملTumors established with cell lines selected for oxaliplatin resistance respond to oxaliplatin if combined with cetuximab.
PURPOSE To establish whether cetuximab, a chimeric IgG1 antibody targeting epidermal growth factor receptor, has the potential to restore responsiveness to oxaliplatin in preclinical cancer models, as has been shown with irinotecan in irinotecan refractory metastatic colorectal cancer patients. EXPERIMENTAL DESIGN The effects of cetuximab and oxaliplatin, alone or in combination, were tested ...
متن کاملActivation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals.
Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3'-phosphoesterase activity removes 3' blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively b...
متن کامل